第七讲:事务到底是隔离的还是不隔离的?

第七讲:事务到底是隔离的还是不隔离的?

前言:

​ 我在第 3 篇文章和你讲事务隔离级别的时候提到过,如果是可重复读隔离级别,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数据,事务 T 看到的仍然跟在启动时看到的一样。也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。

​ 但是,我在上一篇文章中,和你分享行锁的时候又提到,一个事务要更新一行,如果刚好有另外一个事务拥有这一行的行锁,它又不能这么超然了,会被锁住,进入等待状态。问题是,既然进入了等待状态,那么等到这个事务自己获取到行锁要更新数据的时候,它读到的值又是什么呢?

示例:

​ 我给你举一个例子吧。下面是一个只有两行的表的初始化语句。

mysql> CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `k` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);

​ 这里,我们需要注意的是事务的启动时机。

​ begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令。

  • 第一种启动方式,一致性视图是在执行第一个快照读语句时创建的;
  • 第二种启动方式,一致性视图是在执行 start transaction with consistent snapshot 时创建的。

​ 还需要注意的是,在整个专栏里面,我们的例子中如果没有特别说明,都是默认 autocommit=1.

(批注:autocommit为开启状态时,即使没有手动start transaction开启事务,mysql默认也会将用户的操作当做事务即时提交。)

​ 在这个例子中,事务 C 没有显式地使用 begin/commit,表示这个 update 语句本身就是一个事务,语句完成的时候会自动提交。事务 B 在更新了行之后查询 ; 事务 A 在一个只读事务中查询,并且时间顺序上是在事务 B 的查询之后。

结果:

​ 这时,如果我告诉你事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1,你是不是感觉有点晕呢?

​ 所以,今天这篇文章,我其实就是想和你说明白这个问题,希望借由把这个疑惑解开的过程,能够帮助你对 InnoDB 的事务和锁有更进一步的理解。

视图概念

​ 在 MySQL 里,有两个“视图”的概念:

  • 一个是 view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是 create view … ,而它的查询方法与表一样。
  • 另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图,即 consistent read view,用于支持 RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现。

(批注:前者是当前读,后者是快照读。一个是在执行第一句查询语句时才会创建视图,一个是事务启动时就创建视图)

​ 它没有物理结构,作用是事务执行期间用来定义“我能看到什么数据”。

深入了解MVCC

​ 在第 3 篇文章《事务隔离:为什么你改了我还看不见?》中,我跟你解释过一遍 MVCC 的实现逻辑。今天为了说明查询和更新的区别,我换一个方式来说明,把 read view 拆开。你可以结合这两篇文章的说明来更深一步地理解 MVCC。

“快照”在 MVCC 里是怎么工作的?

​ 在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的

​ 这时,你会说这看上去不太现实啊。如果一个库有 100G,那么我启动一个事务,MySQL 就要拷贝 100G 的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。

​ 实际上,我们并不需要拷贝出这 100G 的数据。我们先来看看这个快照是怎么实现的。InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。而每行数据也都是有多个版本的。

​ 每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。

​ 也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

​ 如下图所示,就是一个记录被多个事务连续更新后的状态。

​ 图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。

回顾

​ 你可能会问,前面的文章不是说,语句更新会生成 undo log(回滚日志)吗?那么,undo log 在哪呢?实际上,图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。明白了多版本和 row trx_id 的概念后,我们再来想一下,InnoDB 是怎么定义那个“100G”的快照的。

​ 按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。

​ 因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。

​ 当然,如果“上一个版本”也不可见,那就得继续往前找。

​ 还有,如果是这个事务自己更新的数据,它自己还是要认的。

实现方式

​ 在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

​ 而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。

​ 这个视图数组把所有的 row trx_id 分成了几种不同的情况。

​ 这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  • 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
  • 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  • 如果落在黄色部分,那就包括两种情况
    • a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;
    • b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

​ 比如,对于图 2 中的数据来说,如果有一个事务,它的低水位是 18,那么当它访问这一行数据时,就会从 V4 通过 U3 计算出 V3,所以在它看来,这一行的值是 11。

​ 你看,有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。

​ 所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。

​ 接下来,我们继续看一下图 1 中的三个事务,分析下事务 A 的语句返回的结果,为什么是 k=1。

​ 这里,我们不妨做如下假设:

  • 事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;

  • 事务 A、B、C 的版本号分别是 100、101、102,且当前系统里只有这四个事务;

  • 三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。

​ 这样,事务 A 的视图数组就是[99,100], 事务 B 的视图数组是[99,100,101], 事务 C 的视图数组是[99,100,101,102]。

​ 为了简化分析,我先把其他干扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:

​ 从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。

​ 第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。

​ 你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了。

​ 好,现在事务 A 要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:

  • 找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;
  • 接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;
  • 再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见。

​ 这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。

​ 这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。

​ 所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  • 版本未提交,不可见;
  • 版本已提交,但是是在视图创建后提交的,不可见;
  • 版本已提交,而且是在视图创建前提交的,可见。

​ 现在,我们用这个规则来判断图 4 中的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:

  • (1,3) 还没提交,属于情况 1,不可见;

  • (1,2) 虽然提交了,但是是在视图数组创建之后提交的,属于情况 2,不可见;

  • (1,1) 是在视图数组创建之前提交的,可见。

​ 你看,去掉数字对比后,只用时间先后顺序来判断,分析起来是不是轻松多了。所以,后面我们就都用这个规则来分析。

更新逻辑

细心的同学可能有疑问了:事务 B 的 update 语句,如果按照一致性读,好像结果不对哦?

​ 你看图中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?

​ 是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

​ 因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。

​ 所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3。

​ 这里我们提到了一个概念,叫作当前读。其实,除了 update 语句外,select 语句如果加锁,也是当前读。

​ 所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3。下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。

mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;

​ 再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?

​ 事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。那么,事务 B 的更新语句会怎么处理呢?这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。

​ 到这里,我们把一致性读、当前读和行锁就串起来了。

​ 现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的?可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:

  • 在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
  • 在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

​ 那么,我们再看一下,在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?

​ 这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的 start transaction。

​ 下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。(注意:这里,我们用的还是事务 C 的逻辑直接提交,而不是事务 C’)

​ 这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:

​ (1,3) 还没提交,属于情况 1,不可见;

​ (1,2) 提交了,属于情况 3,可见。

​ 所以,这时候事务 A 查询语句返回的是 k=2。显然地,事务 B 查询结果 k=3。

小结

​ InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图确定数据版本的可见性。

  • 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;
  • 对于读提交,查询只承认在语句启动前就已经提交完成的数据;
  • 而当前读,总是读取已经提交完成的最新版本。

​ 你也可以想一下,为什么表结构不支持“可重复读”?这是因为表结构没有对应的行数据,也没有 row trx_id,因此只能遵循当前读的逻辑。

​ 当然,MySQL 8.0 已经可以把表结构放在 InnoDB 字典里了,也许以后会支持表结构的可重复读。

深入:

NO.1

启动视图后,后面的事务变更是看不到的。 但是变更后的版本是能够看到的。 比如一行记录有1->2->3->4->5,5个版本。 但是我们这个事务视图A是在这个3瞬间启动的。 那视图A是怎么拿到3这个值呢?记住它不是直接在视图中保存的3这个值,而是通过视图版本最后的一条数据,通过undo log 然后一个个从后往前找,先找到5 ,然后这个row tra id 不属于这个视图中,丢弃。 继续找4,不属于。通过4 找到3 。row tra id 属于这个事务视图中,则该视图中认为3是这行的值。

思考:

​ 又到思考题时间了。我用下面的表结构和初始化语句作为试验环境,事务隔离级别是可重复读。现在,我要把所有“字段 c 和 id 值相等的行”的 c 值清零,但是却发现了一个“诡异”的、改不掉的情况。请你构造出这种情况,并说明其原理。

mysql> CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `c` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, c) values(1,1),(2,2),(3,3),(4,4);

​ 复现出来以后,请你再思考一下,在实际的业务开发中有没有可能碰到这种情况?你的应用代码会不会掉进这个“坑”里,你又是怎么解决的呢?

答案:

​ 这样,session A 看到的就是我截图的效果了。其实,还有另外一种场景,同学们在留言区都还没有提到。

​ 这个操作序列跑出来,session A 看的内容也是能够复现我截图的效果的。这个 session B’启动的事务比 A 要早,其实是上期我们描述事务版本的可见性规则时留的彩蛋,因为规则里还有一个“活跃事务的判断”,我是准备留到这里再补充的。

​ 当我试图在这里讲述完整规则的时候,发现第 8 篇文章《事务到底是隔离的还是不隔离的?》中的解释引入了太多的概念,以致于分析起来非常复杂

​ 用新的方式来分析 session B’的更新为什么对 session A 不可见就是:在 session A 视图数组创建的瞬间,session B’是活跃的,属于“版本未提交,不可见”这种情况。

作者:guixiang原文地址:https://www.cnblogs.com/guixiangyyds/p/18319676/mysql7

%s 个评论

要回复文章请先登录注册